
EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

111

Software Reliability Growth Models Determining Release Time and

Testing Effort using Exponentiated-Gompertz Method

Podduturu Sharanya
1
,

Dr. Deepak Sharma

2

1
Research Scholar in Computer Science and Engineering Dept, Monad University, Hapur, Pilkhuwa Distt,

Uttar Pradesh, India
2
Professor in Computer Science and Engineering Dept, Monad University, Hapur, Pilkhuwa Distt,

Uttar Pradesh, India

ABSTRACT

One important consideration for the software product is quality. Every stage of the software development

process was done with the utmost attention to produce a high-quality output. The development process often

incorporates a number of quantitative and qualitative methods. The final software product's features ought to

meet every requirement. A crucial component that measures the likelihood that a software program will

function before it genuinely fails to carry out its intended purpose is reliability. Software testing is a crucial

stage that required enormous amounts of resources. This testing step required more than half of the budget,

which is why it was conducted in a controlled setting. The critical point at which software product testing was

terminated is thought to be the software product release time, and and it might be released onto the market, in

which case the software product ought to be dependable and of high quality. In order to calculate the software

release time, we used the exponentiated-gompertz function as the testing effort function in this paper's

investigation of the idea of software testing effort dependent software reliability growth models. As a result,

three genuine time datasets were used to compute the testing effort dependent models that were built. Least

squares estimation is used to estimate parameters, and measures such as Mean Squared Error (MSE) and

Absolute Error (AE) are used to compare models. The performance of the suggested testing effort dependant

model outperformed that of the other models.

Index Terms: Mean Square Error, Absolute, Software Testing, Software Cost, Software Reliability, and

Testing Effort.

INTRODUCTION

The development and modernization of industries has increased the greater extent of modern devices, whether the

hospitals, business companies, telecommunication and aeronautics. These modern gadgets and computing devises need

always software thus software should have more quality and reliability. Software industries struggling from past few

decades to prepare and design a quality and reliable software as the development process its self is fuzzy and complex

in nature. Now a days industries are adapting new techniques and metrics to achieve the intended quality and reliability.

Software reliability was defined as probability of software product could able to work for certain period of time before

it could actually fail. Usually, software development activities are amalgamated with several tasks.

Software testing is considered to be the most important phase among all the phases where heavy resources were

consumed. Software testing phase usually done in systematic environment by considering all resource and time

aspects. Past few years several authors have proposed different types of Software reliability growth models under

Nonhomogeneous Poisson process models, where each model have its own pros and cons. [1] Designed a

Nonhomogeneous Poisson process stochastic model where failure intensity is decreases exponentially with time. [2]

they assumed that the model follows the failure detection rate which varies with time. [3] has proposed an S shaped

model inflection model by incorporating inflection parameter in their model. Usually most of the software

reliability growth models comes under either. exponential or S- shaped family depending on the kind of assumption

they made during the model design. [4-6] Some authors have proposed software reliability models based on the relation

between failure intensity and its test coverage, they grouped these models under test coverage models. [7-9] In recent

years there has been considerable interest was shown in release time determination of the software, several models

were proposed under this assumption. [10-18] Several studies were carried out to investigate the inclusion of testing

effort into the software reliability growth models. Testing effort is defined as number of test cases used for testing,

number of people allotted for testing and fault determination time. Much of the work was carried out by considering the

various testing effort related functions in Software reliability growth models, however there were still some models

unable to fit to the data in all circumstances. So, in this study we have proposed a new [19, 20] exponentiated-gompertz

distribution as testing effort into the software reliability growth model. The reason for using proposed testing effort

function is, basically failure datasets have either exponential or S- shaped distribution characteristic. In this paper we

have investigated functional characteristic of software reliability growth model by considering Exponentiated-

Gompertz testing effort function.

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

112

0

These Nonhomogeneous Poisson process software reliability growth models usually have the stochastic in nature [21].

These models have failure intensity function which was represented by (𝑡). N(t) represents the number of failures in the

software at a time t and m(t) represents the mean or expectation. This mean value is computed through by the following

equation. The relation between mean and intensity of failure data was given by E[N(t)]=m(t) and the relation between

mean and failure intensity is given by

𝑚(𝑡) = ∫
𝑡
𝜆(𝑡)𝑑𝑡

N(t) have the probability mass function which was given by (1)

𝑃𝑟{𝑁(𝑡) = 𝑛} =
(𝑚(𝑡))𝑛×𝑒−𝑚(𝑡)

𝑛!

𝑛 = 0,1,2. . ∞ (2)

This paper is organized as follows; Section 2 describes the various testing efforts related to Nonhomogeneous Poisson

process models. Section 3 brief over view of Software reliability growth models and their properties. Section 4

describes the various failure datasets were used for study. Section 5 provide the detailed information on performance

metrics used for evaluation of models. Section 6 describes the total review on results and discussion and section 7

conclusion.

RELATED WORKS

The Poisson model [22] decreases the fault rate in geometric progression. Exponential, normal, gamma and Weibull

functions are also used to design the SRGM. The SRGMS are abstractly unsuitable [23] for various proprietary data

sets cross study comparisons and leads to an inadequate usage of statistical testing results. For NHPP, the Exponential

Weibull testing effort function (TEF) [24] is used for designing the inflection S-shaped SRGMs. It is found to be

flexible with imperfect debugging. For Noisy input, the analysis of sensitivity [25] is required to measure the

conclusion stability in terms of noise levels concerned. The genetic programming based on symbolic regression [26] is

found to be efficient for SRGM design. A hierarchical quality model [27, 28] based SRGM is automatically calculates

the metric values and their correlation with various quality profiles. The distance-based approach (DBA) [29] based

SRGM is evaluated for selecting the optimal parameters and yields the ranking. It identifies the importance of criteria

for the application. The Japanese software development system utilizes the Gompertz curve [30] for residual faults

estimation. In SRGM, multiple change points are crucial for detection of environment changes [31]. These are known

for efficiently handling both the imperfect and ideal debugging conditions. In SRGM, application of Queuing modes is

used for describing the fault detection rate and correction procedure. For this, the extension of infinite server queuing

models [32, 33] is used based on multiple change points. The Component Based Software Development (CBSD) [34,

35] is considered as building blocks for SRGM. The CBSD primarily focuses on selection of appropriate user

requirements. Some of the soft errors can be minimized by using minimum redundancy concept of critical data [36, 37].

In [38] Anjum et.al, presented a ranking based weighted criteria for reliability assessment where the failure data sets are

ranked accordingly.

METHODOLOGY

The present paper proposes a novel approach for quality assessment for software growth model. Contribution of Paper

discussed in section A and Motivation behind this Work is discussed in section B.

Contribution of Paper

Non-Homogeneous Poisson Process Software Reliability Growth Models with Generalized Gompertz TEF

Software reliability growth model with Generalized Gompertz testing effort was given by the following assumptions

[11-13, 14-17].

 The fault removal process follows the Nonhomogeneous Poisson process models (NHPP)

 The software system is subjected to failure at random time caused by fault remaining in the system.

 The mean time number of faults detected in the time interval (t, t+Δt) by the current test effort is proportional

for the mean number of remaining faults in the system.

 The proportionality is constant over the time.

 Consumption curve of testing effort is modeled by a Generalized Gompertz TEF.

 Each time a failure occurs, the fault that caused it is immediately removed and no new faults are introduced.

 We can describe the mathematical expression of a testing-effort based on following

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

113

𝑅

Now substitute the equation (7) into the equation (6) we get

−(𝑒𝜂𝑡−1) 𝛿𝛿

(𝑡) = 𝑎𝑏 (𝜙 (1 − 𝑒−(𝑒𝜂𝑡−1))
𝛿𝛿−1

 𝛿𝛿𝜇𝜂𝑒−𝜇𝑒𝜂𝑡+𝜂𝑡+𝜇) 𝑒
−(𝜙�(1−𝑒))

(7)

Motivation behind this Work

Various testing efforts used related to non-homogeneous poisson process software reliability growth models.

Since in the era of software reliability growth models sundry authors have proposed different software testing effort

functions. Conventionally testing effort plays a consequential role in software reliability growth model, and can be

expressed in terms of number of testing persons, number of test cases and time required to find the number of faults during

testing.

Exponential, Rayleigh curve and Weibull Curve [11,13,17]: These testing effort functions were proposed by Yamada in his

research papers.

𝑊𝑊𝑒 (𝑡) = (1 − 𝑒−𝑟𝑡) (8)

𝑊𝑊 (𝑡) = (1 − 𝑒−𝑟𝑡
2

) (9)

𝑊𝑊𝑤𝑤𝑒 (𝑡) = (1 − 𝑒−𝑟𝑡
𝑚

) (10)

Equation (3), (4) and (5) represents the testing effort Curves cognate to exponential Rayleigh and Weibull.

𝑊𝑊𝑒 (𝑡), 𝑊𝑊𝑅 (𝑡), and 𝑊𝑊𝑤𝑤𝑒 (𝑡) represents the cumulative testing efforts of exponential, Rayleigh and Weibull

Exponential curve describes the process deteriorating monotonically. Whereas Rayleigh curve shows the different nature

as compared to exponential unlike exponential curve it first increases and after reaches to certain level it declines. Weibull

curve shows the different variations depending on the value of m, and curve reaches to maximum at m=3.

Logistic curve [16]:

Logistic curve has many advantages in several applications, because the characteristic of authentic time datasets has very

near sodality among themselves.

𝑊𝑊 (𝑡) =
𝐴

(11)

 𝐿 (1+𝛽𝑒−𝑟𝑟𝑡)

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

114

0

) � 𝛿𝛿𝜇𝜂𝑒 (15)

W𝐿 (𝑡) represents the logistic curve cumulative testing effort. In the equation (11) β represents the inflection

parameter.

Log-Logistic Curve [21]:

This curve was used by the authors to capture the increasing and decreasing phenomenon in failure intensity

function. W𝐿𝐿 (𝑡) represents the cumulative log-logistic testing effort function.

W𝐿𝐿
(𝑡) = 𝑁

(𝜃𝑡)𝑘

(1+(𝜃𝑡)𝑘)

(12)

Exponentiated-Gompertz(Generalized Gompertz) Distribution[19,20]:

This distribution was proposed by A. El-Gohary, Ahmad Alshamrani, Adel Naif Al-Otaibi. Main advantage of this testing

effort function is shows various failure intensity increase, decreasing, constant and bath tub depending on the shape

parameter. The Generalized Gompertz cumulative testing effort is given by

W𝐸𝐺

𝜂𝑡 𝛿𝛿
) 𝜇 > 0, 𝜂 > 0 𝑎𝑛𝑑 𝛿𝛿 > 0

(13)

W𝐸𝐺 (𝑡) represents the cumulative testing effort function, δ represents the shape parameter.

W𝐸𝐺 (𝑡) = ∫
𝑡
𝜔(𝑡)𝑑𝑡

(14)

(𝑡) represents current testing effort expenditure which was represented by the equation (15)

(𝑡) = 𝜙 (1 − 𝑒−(𝑒𝜂𝑡−1) 𝛿𝛿−1 −𝜇𝑒𝜂𝑡+𝜂𝑡+𝜇

This generalized Gompertz exhibits various special cases in the forms of distributions depending on the values of

parameters.

 Generalized exponential distribution with parameter (μ,δ) can obtained by making parameter η to approaches

to zero.

 Generalized Gompertz with parameters (μ,η) can be obtained by assigning the zero to parameter δ.

 One parameter μ exponential model can be obtained by making parameter η to approaches to zero and assign the

parameter δ to 1.

Failure Datasets used in this Research

 DS1[3]: This dataset was drawn from the work carried out by Ohba 1984, where data belongs to the PL/1 database

application software consisting of approximately 1,317,000 lines of code. A total of nineteen and

47.65 CPU hours were spend to capture 328 software errors are removed. The test was continued further in order to

recover further errors, and they have recovered round 358 errors.

 DS2[15]: The second dataset was cited from the research papers published y Musa 1987 and Musa 1999. Name of

the system was T1 and called Rome air development project. The size of the software approximately 21700 lines of

code around 21 weeks and 25.3 CPU hours was spent to discover around 136 faults were reported. A total of 93

CPU hours spends during software testing.

 DS3: Third dataset was belonging to the research paper published day Tomha [39]. In this cumulative number of

software bugs discovered 86 and 22 days spend during testing.

Model Performance Metrics and Analysis

Parameter Estimation Methods [40,14]

Here we used least square parameter estimation to estimate the ,δ,η, and μ parameters of the model. These parameters are

estimated for the dataset which is in the form (𝑥𝑖, W𝑖) < 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛 > 𝑎𝑛𝑑 < W1 , W2 , W3 … W𝑛 > and (𝑥𝑖, 𝑚𝑖) <

𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛 > 𝑎𝑛𝑑 < 𝑚1, 𝑚2, 𝑚3 … 𝑚𝑛 >; here xi represents the time of testing ,Wi represents the cumulative testing

effort, mi represents the cumulative errors in the given datasets and „n‟ represents the number of error terms in the

datasets. Following is the expression in which we can derive the residual sum of square

(𝜙, 𝜇, 𝜂, 𝛿𝛿) = ∑𝑛 (W − W(𝑡))
2

(16)

(𝑡) = (1 − 𝑒−𝜇(𝑒 −1)

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

115

𝑖=1

𝑖=1

𝑖=1

=1 𝑖 𝑖
Equation (16) can be expressed in another form by substituting the equation (8).

In this paper we used python-based program for scipy library with curve fit function for parameter estimation.

Performance Analysis and Evaluation Metrics [16,18]

Performance and evaluation metrics are important for analysis and comparative study of various models with

proposed model. The following are the metrics were used in this paper for comparative and performance measure.

MSE: (mean square error): This metric is useful to measure the difference between actual and estimated values of

cumulative errors.

𝑀𝑆𝐸 = ∑𝑛
(
((𝑡𝑖)−𝑦𝑖)2

)

𝑘

(19)

Lower value of MSE indicates fewer fitting errors, and excellent goodness of fitting.

Prediction error: It measure the difference between actual and estimated number of errors at any instant of time.

𝑃𝐸𝑖 = (𝑚𝑖 − 𝑦𝑖)

 (20)

Average value of prediction error known as Bias.

𝐵𝑖𝑎𝑠 = ∑𝑛

Lower the value of Bias indicates better goodness of fit.

(𝑚𝑖−𝑦𝑖)

𝑛

(21)

Variation: The standard deviation of Bias and prediction error known as Variation. Lower the value of Variation

indicates better goodness of fit.

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = ∑(𝑃𝐸𝑖−𝐵𝑖𝑎)

2
𝑛−1

(22)

Root Mean Square Error Prediction Error: It measures how close is out predicted value with estimated value. Lowe the

value indicates the better goodness of fit.

𝑅𝑀𝑆𝑃𝐸 = (𝐵𝑖𝑎𝑠)
2
 + (𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛)

2
 (23)

Lower the value of RMSPE indicates better goodness of fit.

AE (Accuracy of estimation): It is defined as the ratio of difference in actual total number of errors and total number of

errors estimated at the end of the testing by the estimated total number of errors at the end of testing. Here Ma is the total

number of errors estimated and „a‟ is actual number of errors detected at the end of the testing.

EXPERIMENTAL RESULTS AND DISCUSSION

𝐴𝐸 =
𝑀𝑎−𝑎

 (24)

𝑀𝑎

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

116

Figure (1) shows the fitting of testing effort to the actual dataset 1. By using least square parameter estimation was used

to estimate the parameters of our proposed testing effort model and estimated model parameters are 𝜙 = 61.32,

𝜇 = 0.2585, 𝜂 = 0.0982, 𝑎𝑛𝑑 𝛿𝛿 = 0.907. Figure 1 shows the proposed testing effort curve and actual testing effort. As

from the figure 1 shows that out proposed curve fits well and completely captures the real testing effort.

Figure (2) shows the fitting of testing effort to the actual dataset 2. By using least square parameter estimation was used

to estimate the parameters of our proposed testing effort model and estimated model parameters are 𝜙 = 25.88,

𝜇 = 0.00395, 𝜂 = 0.0328, 𝑎𝑛𝑑 𝛿𝛿 = 1.408. Figure 2 shows the proposed testing effort curve and actual testing effort. As

from the figure 1 shows that out proposed curve fits well and completely captures the real testing effort.

Fig.1. Estimated Generalized Gompertz Testing Effort for Dataset1.

Fig.2. Estimated Generalized Gompertz Testing Effort for Dataset2.

Fig.3. Estimated Generalized Gompertz Testing Effort for Dataset3.

Figure (3) shows the fitting of testing effort to the actual dataset 3. By using least square parameter estimation was used

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

117

to estimate the parameters of our proposed testing effort model and estimated model parameters are 𝜙 = 96.67,

𝜇 = 0.2055, 𝜂 = 0.1269, 𝑎𝑛𝑑 𝛿𝛿 = 1.202 Figure 3 shows the proposed testing effort curve and actual testing effort. As

from the figure 1 shows that out proposed curve fits well and completely captures the real testing effort.

Table 1 describes different testing effort functions and their relative performance metrics for the dataset 1.

Figure 4 shows the relative error curve for the dataset 1, which specifies how far our proposed model follows the

actual failure phenomenon.

Table 2 describes various models and their respective parameters and performance metrics like AE and MSE for the

dataset 1. The software reliability growth model with proposed testing effort has a=565.1, b=0.0196, AE=57.84 and

MSE=103.06. From the Table 2 model with proposed testing effort had less AE and MSE values compared with other

models.

Fig.4. Relative Error Graph SRGM with Generalized Gompertz Testing Effort for Dataset1.

Table 1. Performance Analysis of Proposed Testing Effort Function and other Functions for Dataset1

TEF Bias Variation RMS-PE
PE (at the ending of the

testing

Exponentiated-Gompertz 0.0326 0.93 0.90 0.10

Exponentiated Weibull 0.0446 0.95 0.92 -0.09

Burr type X 0.038 0.95 0.93 -0.03

Yamada exponential -0.39 1.37 1.42 1.27

Yamada Rayleigh 0.83 2.17 2.27 2.50

Yamada Weibull 0.03 0.96 0.93 -0.38

Huang logistic -0.10 1.31 1.28 1.05

Table 2. Performance Analysis of Proposed Software Reliability Model and other Models for Dataset1

MODEL a b AE(%) MSE

SRGM with eq. proposed TEF eq.13 565.1 0.0196 57.84 103.06

SRGM with Exponentiated Weibull [14] 565.4 0.0196 57.93 113.10

SRGM with [14] Burr type X 565.7 0.0196 69.15 123.67

Yamada Exponential model with exponential curve [41] 828.25 0.0118 131.4 140.7

Yamada Rayleigh Model with with Rayleigh curve [41] 459.1 0.0273 28.23 268.4

Yamada Weibull Model with Weibull curve [42] 565.35 0.0196 57.91 122.1

Huang Logistic model [16] 394.08 0.0427 10.06 118.6

Ohba exponential model [3] 4555.4 0.0267 27.09 206.9

Infection S shaped model [3] 389.1 0.0935 8.69 133.5

Delayed S shaped model [2] 374.05 0.1976 4.48 168.7

G-O Model [1] 760 0.0322 112.2 139.8

Delayed S shaped model with Rayleigh [16] 333.14 0.1004 6.93 798.5

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

118

Fig.5. Relative Error Graph SRGM with Generalized Gompertz Testing Effort for Dataset2.

Table 3 describes different testing effort functions and their relative performance metrics for the dataset 2.

Table 4 describes various models and their respective parameters and performance metrics like AE and MSE for the

dataset 2. The software reliability growth model with proposed testing effort has a=134.23, b=0.153, AE=28.60 and

MSE=48.20. From the Table 2 model with proposed testing effort had less AE and MSE values compared with other

models.

Figure 5 shows the relative error curve for the dataset 2, which specifies how far our proposed model follows the actual

failure phenomenon.

Table 3. Performance Analysis of Proposed Testing Effort Function and other Functions for Dataset2

TEF Bias Variation RMS-PE
PE (at the ending of the

testing

Exponentiated-Gompertz 0.038 0.358 0.351 0.171

Exponentiated Weibull 0.07 0.387 0.384 0.127

Burr type X 0.155 0.50 0.512 -0.47

Yamada exponential -16.53 6.35 17.71 -13.29

Yamada Rayleigh -1.149 3.46 3.64 6.03

Huang logistic 0.055 0.35 0.35 -0.10

Table 4. Performance Analysis of Proposed Software Reliability Model and other Models for Dataset2

MODEL a b AE(%) MSE

SRGM with eq. proposed TEF eq . 13 134.23 0.153 28.60 48.20

SRGM with [14] Exponentiated Weibull 133.87 0.154 28.79 78.55

SRGM with Burr type X[15] 134.11 0.152 28.67 123.7

Yamada Rayleigh Model with [41] with

Rayleigh curve
866.94 0.00962 25.11 89.24

Huang Logistic model [16] 138.02 0.1451 26.58 62.41

Ohba exponential model[3] 137.2 0.156 27.12 3019.6

Infection S shaped model[3] 159.11 0.0765 15.36 118.3

Delayed S shaped model[2] 237.2 0.0963 26.16 245.24

G-O Model[1] 142.32 0.1246 24.29 2438.3

Fig.6. Relative Error Graph SRGM with Generalized Gompertz Testing Effort for Dataset3.

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

119

Table 5 describes different testing effort functions and their relative performance metrics for the dataset 3.

Table 5. Performance Analysis of Proposed Testing Effort Function and other Functions for Dataset3

TEF Bias Variation RMS-PE
PE (at the ending of the

testing

Exponentiated-Gompertz -0.008 2.179 2.129 1.273

Exponentiated Weibull 0.058 2.212 2.156 1.288

Burr type X 0.155 2.35 2.35 -0.457

Yamada Weibull 0.182 2.37 2.37 -0.44

Yamada Rayleigh 0.324 2.38 2.40 0.15

Huang logistic -0.122 2.28 2.28 0.19

Table 6 describes various models and their respective parameters and performance metrics like AE and MSE for the

dataset 3. The software reliability growth model with proposed testing effort has a=94.89, b=0.025 and MSE=5.42.

From the Table 2 model with proposed testing effort had less AE and MSE values compared with other models.

Table 6. Performance Analysis of Proposed Software Reliability Model and other Models for dataset3

MODEL a r MSE

SRGM with eq. 13 proposed TEF 94.89 0.025 5.42

SRGM with Exponentiated Weibull[14] 94.8 0.025 5.70

SRGM with eq Burr type X [14] 94.61 0.0254 6.55

Yamada Weibull Model with Weibull curve[42] 87.03 0.0345 7.77

Huang Logistic model[16] 88.89 0.0390 25.2

Delayed S shaped model [2] 88.65 0.028 6.31

G-O Model [1] 137.1 0.0515 25.3

Figure 6 shows the relative error curve for the dataset 3, which specifies how far our proposed model follows the actual

failure phenomenon

Optimal Release Time Policy

Identifying the exact time of release of software product from the software industry is an important issue. [7-9, 15]

Many authors have focused on this issue. Determining the exact time of release of software product can greatly impact

on the software cost and its quality. If the software product released in a short time can save time and cost but we have

to compromise with reliability; if the product released after a long and through testing, the product can have quality but

it increases the cost of testing. Release time of the software product depends on two factors, one reliability and another

cost. So, we need to determine the time of delivery of software product such that the product can have high reliability

and cost of expenditure of testing is minimized.

Software Reliability

Software reliability is defined as probability of product should function correctly in a given environment before it

fails.

𝑅 = 𝑒−[𝑚(𝑡+Δ𝑡)−𝑚(𝑡)] (25)

In the equation (25) R represents the reliability of software product. Figure 7 represents the estimated reliability of

software product from the proposed model. In the equation 25 m(t) is mean value of proposed software reliability

model. Δ𝑡 represents the fraction of time period, in our case we assumed the value 0.2.

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

120

Fig.7. Estimated Reliability Curve for the Dataset1.

Software Cost

Computing the software cost during the software development was is an important task, several authors have

concentrated much on this issue. Cost of the software product development can be an integration of different cost‟s, one

before testing phase, one during the testing and cost related to after delivery. Let‟s assume C1 is the cost incur for

finding the errors pre testing phase, C2 is cost to detect the errors during the testing phase and C3 is cost incur to find

errors after the testing phase.

The term COST in the equation (26) represents the total cost incurs during product development. T represents the

constant usually we assume maximum time for this quantity, in our paper we assign the value 100 to this term.

Fig.8. Estimated Cost Curve for the Dataset1.

From the equation (26) we computed the cost of development by assigning C1=1$, C2=5$ and C3=10$ for the dataset-

1. Figure 8 shows the graph of computed cost for the proposed software reliability growth model. Table 7 shows the

computed cost and reliability of proposed software reliability model.

Release Time Determination

From the equation (25) and (26) we have computed reliability and cost of software product. Software product can be

released into market either time at which cost of product become optimal or time at which reliability of software

become standard accepted level. In this paper standard acceptance of software reliability level is 0.95 which can be

obtained at TR= 38.5 weeks and optimal cost COST=1120$ was obtained at TC=40 weeks.

𝑇0 = { , 𝑇𝐶 }

 (2

7)

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

121

From the equation (27) we can extract the optimal time T0 which satisfies the our both conditions. In our case the

optimal release time T0=38.5 weeks.

Table 7. Cost and Reliability for the Dataset 1

TIME
RELIABI

LITY
COST TIME

RELIABI

LITY
COST TIME

RELIAB

ILITY
COST

11 0.03 1456.36 21 0.18 1179.84 31 0.66 1124.67

12 0.03 1413.67 22 0.21 1167.97 32 0.72 1123.53

13 0.04 1374.48 23 0.25 1158.11 33 0.77 1122.67

14 0.05 1338.8 24 0.29 1150.02 34 0.81 1122.03

15 0.06 1306.61 25 0.33 1143.45 35 0.85 1121.56

16 0.07 1277.83 26 0.38 1138.18 36 0.89 1121.22

17 0.08 1252.35 27 0.44 1134 37 0.92 1120.97

18 0.1 1230.01 28 0.49 1130.71 38 0.94 1120.8

19 0.12 1210.62 29 0.55 1128.15 39 0.96 1120.68

20 0.15 1193.97 30 0.61 1126.18 40 0.97 1120.6

CONCLUSIONS

Using the recently developed Exponentiated-Gompertz testing effort, we have examined the testing effort dependent

software reliability growth model in this research. The Exponentiated-Gompertz testing effort function can be used to

fit any kind of dataset and is linked to different failure rate features. The software reliability growth model provides an

excellent match and accurately represents the real testing effort when combined with the proposed testing effort

function. By comparing the suggested model with earlier models using performance indicators, it was determined that

the proposed testing effort model produced satisfactory results. The software product's release schedule is computed in

this paper based on many characteristics, including cost and dependability.

REFERENCES

[1]. A. L. Goel and K. Okumoto, “Time-Dependent Error-Detection Rate Model for Software Reliability and

Other Performance Measures,” IEEE Trans. Rel., vol. R-28, no. 3, pp. 206–211, Aug. 1979, doi:

10.1109/TR.1979.5220566.

[2]. S. Yamada and S. Osaki, “Software Reliability Growth Modeling: Models and Applications,” IIEEE Trans.

Software Eng., vol. SE-11, no. 12, pp. 1431–1437, Dec. 1985, doi: 10.1109/TSE.1985.232179.

[3]. M. Ohba, “Inflection S-Shaped Software Reliability Growth Model,” in Stochastic Models in Reliability

Theory, vol. 235, S. Osaki and Y. Hatoyama, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp.

144–162. doi: 10.1007/978-3-642- 45587-2_10.

[4]. B. Ciciani and A. Pasquini, “Software Reliability Models and Test Coverage,” in Safe Comp 96, E. Schoitsch,

Ed. London: Springer London, 1997, pp. 105–114. doi: 10.1007/978-1-4471-0937-2_9.

[5]. X. Cai and M. R. Lyu, “Software Reliability Modeling with Test Coverage: Experimentation and

Measurement with A Fault- Tolerant Software Project,” in the 18th IEEE International Symposium on

Software Reliability (ISSRE ‟07), Trollhattan, Sweden, Nov. 2007, pp. 17–26. doi: 10.1109/ISSRE.2007.17.

[6]. Q. Li and H. Pham, “A testing-coverage software reliability model considering fault removal efficiency and

error generation,” PLoS ONE, vol. 12, no. 7, p. e0181524, Jul. 2017, doi: 10.1371/journal.pone.0181524.

[7]. S. Yamada, H. Narihisa, and S. Osaki, “Optimum release policies for a software system with a scheduled

software delivery time,” International Journal of Systems Science, vol. 15, no. 8, pp. 905–914, Aug. 1984, doi:

10.1080/00207728408926610.

[8]. Chin-Yu Huang, Sy-Yen Luo, and M. R. Lyu, “Optimal software release policy based on cost and reliability

with testing efficiency,” in Proceedings. Twenty-Third Annual International Computer Software and

Applications Conference (Cat. No.99CB37032), Phoenix, AZ, USA, 1999, pp. 468–473. doi:

10.1109/CMPSAC.1999.814328.

[9]. P. K. Kapur and R. B. Garg, “Cost–reliability optimum release policies for a software system under penalty

cost,” International Journal of Systems Science, vol. 20, no. 12, pp. 2547–2562, Dec. 1989, doi:

10.1080/00207728908910332.

[10]. L. Fiondella and S. S. Gokhale, “Software Reliability Models Incorporating Testing Effort,” OPSEARCH,

vol. 45, no. 4, pp. 351–368, Dec. 2008, doi: 10.1007/BF03398825.

[11]. S. Yamada, H. Ohtera, and H. Narihisa, “Software Reliability Growth Models with Testing-Effort,” IEEE

Trans. Rel., vol. 35, no. 1, pp. 19–23, 1986, doi: 10.1109/TR.1986.4335332.

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

122

[12]. N. Ahmad and Md. Zafar Imam, “Software Reliability Growth Models with Log-logistic Testing-Effort

Function: A Comparative Study,” IJCA, vol. 75, no. 12, pp. 8–11, Aug. 2013, doi: 10.5120/13161-0818.

[13]. S. Yamada and H. Ohtera, “Software reliability growth models for testing-effort control,” European Journal of

Operational Research, vol. 46, no. 3, pp. 343–349, Jun. 1990, doi: 10.1016/0377-2217(90)90009-Z.

[14]. M. U. Bokhari and N. Ahmad, “SOFTWARE RELIABILITY GROWTH MODELING FOR

EXPONENTIATED WEIBULL

[15]. FUNCTION WITH ACTUAL SOFTWARE FAILURES DATA,” in Innovative Applications of Information

Technology for the Developing World, Kathmandu, Nepal, Jul. 2007, pp. 390–395. doi:

10.1142/9781860948534_0062.

[16]. N. Ahmad, M. G. M. Khan, S. M. K. Quadri, and M. Kumar, “Modelling and analysis of software reliability

with Burr type X testing‐effort and release‐time determination,” Jnl of Modelling in Management, vol. 4, no.

1, pp. 28–54, Mar. 2009, doi: 10.1108/17465660910943748.

[17]. C.-Y. Huang, S.-Y. Kuo, and M. R. Lyu, “An Assessment of Testing-Effort Dependent Software Reliability

Growth Models,” IEEE Trans. Rel., vol. 56, no. 2, pp. 198–211, Jun. 2007, doi: 10.1109/TR.2007.895301.

[18]. S. Yamada, J. Hishitani, and S. Osaki, “A software reliability growth model for test-effort management,” in

[1991] Proceedings the Fifteenth Annual International Computer Software & Applications Conference,

Tokyo, Japan, 1991, pp. 585–590. doi: 10.1109/CMPSAC.1991.170243.

[19]. K. Pillai and V. S. Sukumaran Nair, “A model for software development effort and cost estimation,” IIEEE

Trans. Software Eng., vol. 23, no. 8, pp. 485–497, Aug. 1997, doi: 10.1109/32.624305.

[20]. A. El-Gohary, A. Alshamrani, and A. N. Al-Otaibi, “The generalized Gompertz distribution,” Applied

Mathematical Modelling, vol. 37, no. 1–2, pp. 13–24, Jan. 2013, doi: 10.1016/j.apm.2011.05.017.

[21]. H. H. Abu-Zinadah, “Goodness-of-Fit Tests for the Exponentiated Gompertz Distribution,” vol. 2, no. 4, p. 9,

2014.

[22]. S. S. Gokhale and K. S. Trivedi, “Log-logistic software reliability growth model,” in Proceedings Third IEEE

International High-Assurance Systems Engineering Symposium (Cat. No.98EX231), Washington, DC, USA,

1998, pp. 34–41. doi: 10.1109/HASE.1998.731593.

[23]. Kapur P.K., Pham Hoang A., Gupta, Jha P.C., “Software Reliability, Assessment, with, OR Applications,”

ISBN: 978-0- 85729-203-2 (Print) 978-0-85729-204-9 (Online)

[24]. Stefan Lessmann, Swantje Pietsch, Baesens Bart, Mues Christophe, “Benchmarking, Classification Models,

for Software, Defect Prediction- A Proposed. Framework, and Novel Findings”, IEEE Transactions on

Software Engineering, Volume 34,

[25]. Issue 4, July to Aug 2008, Page(s): 485 – 496, DOI: 10.1109/TSE.2008.35

[26]. N. Ahmad, Khan M.G.M., L.S. Rafi, "A study of testing effort dependent inflection S ‐ shaped SRGMs with

imperfect debugging", International Journal of Quality and Reliability, Management, 2010, Volume27, Issue

1, pages: 89–110, DOI: https://doi.org/10.1108/02656711011009335

[27]. Liebchen Gernot A, Shepperd Martin, “Data sets and Data Quality in Software Engineering”, PROMISE

'08Proceeding of the fourth international workshop on Predictor models, in software engg. (PROMISE'08),

2008, ACM, New York, USA, pages: 39- 44, DOI: http://dx.doi.org/10.1145/1370788.137079

[28]. Afzal Wasif and Torkar Richard, “Review - On the application, of genetic, Programming, for software,

engineering predictive modeling”, Expert Syst. Appl. 38, 9 (Sept 2011), 11984 to 11997,

DOI=http://dx.doi.org/10.1016/j.eswa.2011.03.041.

[29]. Samoladas Ioannis, Gousios Georgios, Spinellis Diomidis, Stamelos Ioannis, “The SQO-OSS Quality Model:

Measurement Based Open Source Software Evaluation”, Vol. 275, IFIP series: The International, Federation

for, Information Processing, pp 237-248.

[30]. Md. Nasar, Prashant Johri, Udayan Chanda, “Software Testing Resource Allocation and Release Time

Problem: A Review",

[31]. International Journal of Modern Education and Computer Science, vol.6, no.2, pp.48-55, 2014.

[32]. Sharma Kapil,Garg Rakesh , Nagpal C.K.,Garg R.K., “Selection of Optimal SRGMs Using a Distance. Based

Approach,” IEEE Transactions on Reliability (Volume: 59, Issue:2, June 2010), Page(s): 266 – 276.

[33]. Ohishi Koji, Okamura Hiroyuki, and Dohi Tadashi. 2009. Gompertz software reliability model: Estimation,

algorithm and empirical, validation, J. Syst. Softw. 82, March 2009, 535-543.

DOI=http://dx.doi.org/10.1016/j.jss.2008.11.840.

[34]. Huang Chin Yu,Lyu Michael R., “Estimation & Analysis of Some Generalized Multiple, Change, Point

Software Reliability Models,” IEEE Transactions on Reliability (Volume: 60, Issue: 2, June 2011), Page(s):

498 – 514.

[35]. Huang Chin Yu, Hung Tsui-Ying, “Software, reliability, analysis and assessment using queuing. models with

multiple. change points”, Vol. 60, Issue 7, October 2010, Pages 2015–2030.

[36]. Li X., Xie M., Ng S.H., “Sensitivity analysis of release time of software reliability models incorporating

testing effort with multiple change-points”, Applied Mathematical Modeling, Volume 34, Issue 11, November

2010, Pages 3560-3570, DOI: https://doi.org/10.1016/j.apm.2010.03.006

[37]. Kalaimagal Sivamuni and Srinivasan Rengaramanujam, 2008, A retrospective on software component quality

http://dx.doi.org/10.1145/1370788.137079
http://dx.doi.org/10.1016/j.eswa.2011.03.041
http://dx.doi.org/10.1016/j.jss.2008.11.840

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045

Volume 13, Issue 2, July-December, 2024, Available online at: www.eduzonejournal.com

123

models, ACM SIGSOFT Engg. Notes, Volume 33, Issue 6 (October 2008), Pages 1 to 10, DOI:

http://dx.doi.org/10.1145/1449603.1449611.

[38]. Chandra MouliVenkata Srinivas Akana, C. Divakar, Ch. Satyanarayana, "Design of Generalized Weighted

Laplacian Based Quality Assessment for Software Reliability Growth Models", International Journal of

Information Technology and Computer Science, Vol.10, No.5, pp.48-54, 2018.

[39]. Saeid A. Keshtgar, Bahman B. Arasteh,"Enhancing Software Reliability against Soft-Error using Minimum

Redundancy on Critical Data", International Journal of Computer Network and Information Security, Vol.9,

No.5, pp.21-30, 2017.

[40]. Javaid Iqbal,"Analysis of Some Software Reliability Growth Models with Learning Effects", International

Journal of Mathematical Sciences and Computing, Vol.2, No.3, pp.58-70, 2016.

[41]. Mohd. Anjum, Md. Asraful Haque, Nesar Ahmad,"Analysis and Ranking of Software Reliability Models

Based on Weighted Criteria Value", International Journal of Information Technology and Computer Science,

vol.5, no.2, pp.1-14, 2013.

[42]. Y TOHMA, JACOBY, MURATA, YAMAMOTO “Hyper- Geometric Distribution Model to Estimate the

Number of Residual Software Faults” IIEEE Trans. Eng.1989.

[43]. H. Pham, System Software Reliability. 2006. Accessed: Jun. 14, 2021. [Online]. Available:

https://doi.org/10.1007/1-84628- 295-0

[44]. S. Yamada, and H.Ohtera, “Software reliability growth models for testing-effort control Elsevier Science

Publishers B.V. (North-Holland) 1990.

[45]. S. Yamada, J. Hishitani, and S. Osaki “Software-Reliability Growth with a Weibull Test-Effort: A Model

& Application” IIEEE Trans. Reliability Eng., vol. 42, no. 1, Mar. 1993, doi: 10.1109/32.624305.

http://dx.doi.org/10.1145/1449603.1449611

