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ABSTRACT 

 

One important consideration for the software product is quality. Every stage of the software development 

process was done with the utmost attention to produce a high-quality output. The development process often 

incorporates a number of quantitative and qualitative methods. The final software product's features ought to 

meet every requirement. A crucial component that measures the likelihood that a software program will 

function before it genuinely fails to carry out its intended purpose is reliability. Software testing is a crucial 

stage that required enormous amounts of resources. This testing step required more than half of the budget, 

which is why it was conducted in a controlled setting. The critical point at which software product testing was 

terminated is thought to be the software product release time, and and it might be released onto the market, in 

which case the software product ought to be dependable and of high quality. In order to calculate the software 

release time, we used the exponentiated-gompertz function as the testing effort function in this paper's 

investigation of the idea of software testing effort dependent software reliability growth models. As a result, 

three genuine time datasets were used to compute the testing effort dependent models that were built. Least 

squares estimation is used to estimate parameters, and measures such as Mean Squared Error (MSE) and 

Absolute Error (AE) are used to compare models. The performance of the suggested testing effort dependant 

model outperformed that of the other models. 

 

Index Terms: Mean Square Error, Absolute, Software Testing, Software Cost, Software Reliability, and 

Testing Effort. 

 

INTRODUCTION 

The development and modernization of industries has increased the greater extent of modern devices, whether the 

hospitals, business companies, telecommunication and aeronautics. These modern gadgets and computing devises need 

always software thus software should have more quality and reliability. Software industries struggling from past few 

decades to prepare and design a quality and reliable software as the development process its self is fuzzy and complex 

in nature. Now a days industries are adapting new techniques and metrics to achieve the intended quality and reliability. 

Software reliability was defined as probability of software product could able to work for certain period of time before 

it could actually fail. Usually, software development activities are amalgamated with several tasks.  

 

Software testing is considered to be the most important phase among all the phases where heavy resources were 

consumed. Software testing phase usually done in systematic environment by considering all resource and time 

aspects. Past few years several authors have proposed different types of Software reliability growth models under 

Nonhomogeneous Poisson process models, where each model have its own pros and cons. [1] Designed a 

Nonhomogeneous Poisson process stochastic model where failure intensity is decreases exponentially with time. [2] 

they assumed that the model follows the failure detection rate which varies with time. [3] has proposed an S shaped 

model inflection model by incorporating inflection parameter in their model. Usually most of the software 

reliability growth models comes under either. exponential or S- shaped family depending on the kind of assumption 

they made during the model design. [4-6] Some authors have proposed software reliability models based on the relation 

between failure intensity and its test coverage, they grouped these models under test coverage models. [7-9] In recent 

years there has been considerable interest was shown in release time determination of the software, several models 

were proposed under this assumption. [10-18] Several studies were carried out to investigate the inclusion of testing 

effort into the software reliability growth models. Testing effort is defined as number of test cases used for testing, 

number of people allotted for testing and fault determination time. Much of the work was carried out by considering the 

various testing effort related functions in Software reliability growth models, however there were still some models 

unable to fit to the data in all circumstances. So, in this study we have proposed a new [19, 20] exponentiated-gompertz 

distribution as testing effort into the software reliability growth model. The reason for using proposed testing effort 

function is, basically failure datasets have either exponential or S- shaped distribution characteristic. In this paper we 

have investigated functional characteristic of software reliability growth model by considering Exponentiated-

Gompertz testing effort function. 
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These Nonhomogeneous Poisson process software reliability growth models usually have the stochastic in nature [21]. 

These models have failure intensity function which was represented by (𝑡). N(t) represents the number of failures in the 

software at a time t and m(t) represents the mean or expectation. This mean value is computed through by the following 

equation. The relation between mean and intensity of failure data was given by E[N(t)]=m(t) and the relation between 

mean and failure intensity is given by 

𝑚(𝑡) = ∫
𝑡 
𝜆(𝑡)𝑑𝑡 

 

N(t) have the probability mass function which was given by           (1) 

 

𝑃𝑟{𝑁(𝑡) = 𝑛} = 
(𝑚(𝑡))𝑛×𝑒−𝑚(𝑡)

 

𝑛! 

𝑛 = 0,1,2. . ∞ (2) 

 

 
This paper is organized as follows; Section 2 describes the various testing efforts related to Nonhomogeneous Poisson 

process models. Section 3 brief over view of Software reliability growth models and their properties. Section 4 

describes the various failure datasets were used for study. Section 5 provide the detailed information on performance 

metrics used for evaluation of models. Section 6 describes the total review on results and discussion and section 7 

conclusion. 

 

RELATED WORKS 

 

The Poisson model [22] decreases the fault rate in geometric progression. Exponential, normal, gamma and Weibull 

functions are also used to design the SRGM. The SRGMS are abstractly unsuitable [23] for various proprietary data 

sets cross study comparisons and leads to an inadequate usage of statistical testing results. For NHPP, the Exponential 

Weibull testing effort function (TEF) [24] is used for designing the inflection S-shaped SRGMs. It is found to be 

flexible with imperfect debugging. For Noisy input, the analysis of sensitivity [25] is required to measure the 

conclusion stability in terms of noise levels concerned. The genetic programming based on symbolic regression [26] is 

found to be efficient for SRGM design. A hierarchical quality model [27, 28] based SRGM is automatically calculates 

the metric values and their correlation with various quality profiles. The distance-based approach (DBA) [29] based 

SRGM is evaluated for selecting the optimal parameters and yields the ranking. It identifies the importance of criteria 

for the application. The Japanese software development system utilizes the Gompertz curve [30] for residual faults 

estimation. In SRGM, multiple change points are crucial for detection of environment changes [31]. These are known 

for efficiently handling both the imperfect and ideal debugging conditions. In SRGM, application of Queuing modes is 

used for describing the fault detection rate and correction procedure. For this, the extension of infinite server queuing 

models [32, 33] is used based on multiple change points. The Component Based Software Development (CBSD) [34, 

35] is considered as building blocks for SRGM. The CBSD primarily focuses on selection of appropriate user 

requirements. Some of the soft errors can be minimized by using minimum redundancy concept of critical data [36, 37]. 

In [38] Anjum et.al, presented a ranking based weighted criteria for reliability assessment where the failure data sets are 

ranked accordingly. 

 

METHODOLOGY 

 

The present paper proposes a novel approach for quality assessment for software growth model. Contribution of Paper 

discussed in section A and Motivation behind this Work is discussed in section B. 

 

Contribution of Paper 

Non-Homogeneous Poisson Process Software Reliability Growth Models with Generalized Gompertz TEF 

 

Software reliability growth model with Generalized Gompertz testing effort was given by the following assumptions 

[11-13, 14-17]. 

 

 The fault removal process follows the Nonhomogeneous Poisson process models (NHPP) 

 The software system is subjected to failure at random time caused by fault remaining in the system. 

 The mean time number of faults detected in the time interval (t, t+Δt) by the current test effort is proportional 

for the mean number of remaining faults in the system. 

 The proportionality is constant over the time. 

 Consumption curve of testing effort is modeled by a Generalized Gompertz TEF. 

 Each time a failure occurs, the fault that caused it is immediately removed and no new faults are introduced. 

 We can describe the mathematical expression of a testing-effort based on following 
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𝑅 

 

 
 

Now substitute the equation (7) into the equation (6) we get 

−(𝑒𝜂𝑡−1)  𝛿𝛿 

(𝑡) = 𝑎𝑏 (𝜙 (1 − 𝑒−(𝑒𝜂𝑡−1))
𝛿𝛿−1

 𝛿𝛿𝜇𝜂𝑒−𝜇𝑒𝜂𝑡+𝜂𝑡+𝜇) 𝑒
−(𝜙�(1−𝑒 ) ) 

(7) 

 

 

Motivation behind this Work 

Various testing efforts used related to non-homogeneous poisson process software reliability growth models. 

 

Since in the era of software reliability growth models sundry authors have proposed different software testing effort 

functions. Conventionally testing effort plays a consequential role in software reliability growth model, and can be 

expressed in terms of number of testing persons, number of test cases and time required to find the number of faults during 

testing. 

Exponential, Rayleigh curve and Weibull Curve [11,13,17]: These testing effort functions were proposed by Yamada in his 

research papers. 

 

𝑊𝑊𝑒 (𝑡) = (1 − 𝑒−𝑟𝑡) (8) 

𝑊𝑊 (𝑡) = (1 − 𝑒−𝑟𝑡
2 

) (9) 

 

𝑊𝑊𝑤𝑤𝑒 (𝑡) = (1 − 𝑒−𝑟𝑡
𝑚

) (10) 

 

Equation (3), (4) and (5) represents the testing effort Curves cognate to exponential Rayleigh and Weibull. 

𝑊𝑊𝑒 (𝑡), 𝑊𝑊𝑅 (𝑡), and 𝑊𝑊𝑤𝑤𝑒 (𝑡) represents the cumulative testing efforts of exponential, Rayleigh and Weibull 

Exponential curve describes the process deteriorating monotonically. Whereas Rayleigh curve shows the different nature 

as compared to exponential unlike exponential curve it first increases and after reaches to certain level it declines. Weibull 

curve shows the different variations depending on the value of m, and curve reaches to maximum at m=3. 

Logistic curve [16]: 

 

Logistic curve has many advantages in several applications, because the characteristic of authentic time datasets has very 

near sodality among themselves. 

 

𝑊𝑊 (𝑡) = 
𝐴

 
(11) 

               𝐿           (1+𝛽𝑒−𝑟𝑟𝑡) 
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) � 𝛿𝛿𝜇𝜂𝑒 (15) 

 

W𝐿 (𝑡) represents the logistic curve cumulative testing effort. In the equation (11) β represents the inflection 

parameter. 

 

Log-Logistic Curve [21]: 

 

This curve was used by the authors to capture the increasing and decreasing phenomenon in failure intensity 

function. W𝐿𝐿 (𝑡) represents the cumulative log-logistic testing effort function. 

 

 

W𝐿𝐿 
(𝑡) = 𝑁  

(𝜃𝑡)𝑘
 

(1+(𝜃𝑡)𝑘) 

(12) 

 

 

Exponentiated-Gompertz(Generalized Gompertz) Distribution[19,20]: 

 

This distribution was proposed by A. El-Gohary, Ahmad Alshamrani, Adel Naif Al-Otaibi. Main advantage of this testing 

effort function is shows various failure intensity increase, decreasing, constant and bath tub depending on the shape 

parameter. The Generalized Gompertz cumulative testing effort is given by 

 

 

W𝐸𝐺 

𝜂𝑡 𝛿𝛿 
) 𝜇 > 0, 𝜂 > 0 𝑎𝑛𝑑 𝛿𝛿 > 0 

(13) 

 

W𝐸𝐺 (𝑡) represents the cumulative testing effort function, δ represents the shape parameter. 

 

W𝐸𝐺 (𝑡) = ∫
𝑡 
𝜔(𝑡)𝑑𝑡 

(14) 

(𝑡) represents current testing effort expenditure which was represented by the equation (15) 

(𝑡) = 𝜙 (1 − 𝑒−(𝑒𝜂𝑡−1) 𝛿𝛿−1 −𝜇𝑒𝜂𝑡+𝜂𝑡+𝜇 

 

 

This generalized Gompertz exhibits various special cases in the forms of distributions depending on the values of 

parameters. 

 

 Generalized exponential distribution with parameter (μ,δ) can obtained by making parameter η to approaches 

to zero. 

 Generalized Gompertz with parameters (μ,η) can be obtained by assigning the zero to parameter δ. 

 One parameter μ exponential model can be obtained by making parameter η to approaches to zero and assign the 

parameter δ to 1. 

Failure Datasets used in this Research 

 DS1[3]: This dataset was drawn from the work carried out by Ohba 1984, where data belongs to the PL/1 database 

application software consisting of approximately 1,317,000 lines of code. A total of nineteen and 

47.65 CPU hours were spend to capture 328 software errors are removed. The test was continued further in order to 

recover further errors, and they have recovered round 358 errors. 

 DS2[15]: The second dataset was cited from the research papers published y Musa 1987 and Musa 1999. Name of 

the system was T1 and called Rome air development project. The size of the software approximately 21700 lines of 

code around 21 weeks and 25.3 CPU hours was spent to discover around 136 faults were reported. A total of 93 

CPU hours spends during software testing. 

 DS3: Third dataset was belonging to the research paper published day Tomha [39]. In this cumulative number of 

software bugs discovered 86 and 22 days spend during testing. 

 

Model Performance Metrics and Analysis 

Parameter Estimation Methods [40,14] 

Here we used least square parameter estimation to estimate the  ,δ,η, and μ parameters of the model. These parameters are 

estimated for the dataset which is in the form (𝑥𝑖, W𝑖) < 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛 > 𝑎𝑛𝑑 < W1 , W2 , W3 … W𝑛 > and (𝑥𝑖, 𝑚𝑖) < 

𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛 > 𝑎𝑛𝑑 < 𝑚1, 𝑚2, 𝑚3 … 𝑚𝑛 >; here xi represents the time of testing ,Wi represents the cumulative testing 

effort, mi represents the cumulative errors in the given datasets and „n‟ represents the number of error terms in the 

datasets. Following is the expression in which we can derive the residual sum of square 

 

(𝜙, 𝜇, 𝜂, 𝛿𝛿) = ∑𝑛 (W − W(𝑡 ))
2
 

(16) 

(𝑡) = (1 − 𝑒−𝜇(𝑒 −1) 
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𝑖=1 

𝑖=1 

𝑖=1 

=1 𝑖 𝑖 
Equation (16) can be expressed in another form by substituting the equation (8). 

 

 
 

 

In this paper we used python-based program for scipy library with curve fit function for parameter estimation. 

 

Performance Analysis and Evaluation Metrics [16,18] 

Performance and evaluation metrics are important for analysis and comparative study of various models with 

proposed model. The following are the metrics were used in this paper for comparative and performance measure. 

 

MSE: (mean square error): This metric is useful to measure the difference between actual and estimated values of 

cumulative errors. 

 

𝑀𝑆𝐸 = ∑𝑛 
(
((𝑡𝑖)−𝑦𝑖)2

)
 

𝑘 

(19) 

Lower value of MSE indicates fewer fitting errors, and excellent goodness of fitting. 

 

Prediction error: It measure the difference between actual and estimated number of errors at any instant of time. 

𝑃𝐸𝑖 = (𝑚𝑖 − 𝑦𝑖) 

 (20) 

Average value of prediction error known as Bias. 

 

𝐵𝑖𝑎𝑠 = ∑𝑛 

 

 

Lower the value of Bias indicates better goodness of fit. 

(𝑚𝑖−𝑦𝑖) 

𝑛 

(21) 

 

Variation: The standard deviation of Bias and prediction error known as Variation. Lower the value of Variation 

indicates better goodness of fit. 

 

 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  ∑(𝑃𝐸𝑖−𝐵𝑖𝑎)

2 
𝑛−1 

(22) 

 

Root Mean Square Error Prediction Error: It measures how close is out predicted value with estimated value. Lowe the 

value indicates the better goodness of fit. 

 

𝑅𝑀𝑆𝑃𝐸 = (𝐵𝑖𝑎𝑠)
2
 + (𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛)

2
 (23)   

 

Lower the value of RMSPE indicates better goodness of fit. 

AE (Accuracy of estimation): It is defined as the ratio of difference in actual total number of errors and total number of 

errors estimated at the end of the testing by the estimated total number of errors at the end of testing. Here Ma is the total 

number of errors estimated and „a‟ is actual number of errors detected at the end of the testing. 

 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

𝐴𝐸 = 
𝑀𝑎−𝑎

 (24) 

𝑀𝑎 
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Figure (1) shows the fitting of testing effort to the actual dataset 1. By using least square parameter estimation was used 

to estimate the parameters of our proposed testing effort model and estimated model parameters are 𝜙 = 61.32, 

𝜇 = 0.2585, 𝜂 = 0.0982, 𝑎𝑛𝑑 𝛿𝛿 = 0.907. Figure 1 shows the proposed testing effort curve and actual testing effort. As 

from the figure 1 shows that out proposed curve fits well and completely captures the real testing effort. 

 

Figure (2) shows the fitting of testing effort to the actual dataset 2. By using least square parameter estimation was used 

to estimate the parameters of our proposed testing effort model and estimated model parameters are 𝜙 = 25.88, 

𝜇 = 0.00395, 𝜂 = 0.0328, 𝑎𝑛𝑑 𝛿𝛿 = 1.408. Figure 2 shows the proposed testing effort curve and actual testing effort. As 

from the figure 1 shows that out proposed curve fits well and completely captures the real testing effort. 

 

 

Fig.1. Estimated Generalized Gompertz Testing Effort for Dataset1. 

 

 

Fig.2. Estimated Generalized Gompertz Testing Effort for Dataset2. 

 

 

Fig.3. Estimated Generalized Gompertz Testing Effort for Dataset3. 

 

Figure (3) shows the fitting of testing effort to the actual dataset 3. By using least square parameter estimation was used 
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to estimate the parameters of our proposed testing effort model and estimated model parameters are 𝜙 = 96.67, 

𝜇 = 0.2055, 𝜂 = 0.1269, 𝑎𝑛𝑑 𝛿𝛿 = 1.202 Figure 3 shows the proposed testing effort curve and actual testing effort. As 

from the figure 1 shows that out proposed curve fits well and completely captures the real testing effort. 

 

Table 1 describes different testing effort functions and their relative performance metrics for the dataset 1. 

 

Figure 4 shows the relative error curve for the dataset 1, which specifies how far our proposed model follows the   

actual failure phenomenon. 

 

Table 2 describes various models and their respective parameters and performance metrics like AE and MSE for the 

dataset 1. The software reliability growth model with proposed testing effort has a=565.1, b=0.0196, AE=57.84 and 

MSE=103.06. From the Table 2 model with proposed testing effort had less AE and MSE values compared with other 

models. 

 

 

Fig.4. Relative Error Graph SRGM with Generalized Gompertz Testing Effort for Dataset1. 

 

Table 1. Performance Analysis of Proposed Testing Effort Function and other Functions for Dataset1 

 

TEF Bias Variation RMS-PE 
PE (at the ending of the 

testing 

Exponentiated-Gompertz 0.0326 0.93 0.90 0.10 

Exponentiated Weibull 0.0446 0.95 0.92 -0.09 

Burr type X 0.038 0.95 0.93 -0.03 

Yamada exponential -0.39 1.37 1.42 1.27 

Yamada Rayleigh 0.83 2.17 2.27 2.50 

Yamada Weibull 0.03 0.96 0.93 -0.38 

Huang logistic -0.10 1.31 1.28 1.05 

 

Table 2. Performance Analysis of Proposed Software Reliability Model and other Models for Dataset1 

 

MODEL a b AE(%) MSE 

SRGM with eq. proposed TEF eq.13 565.1 0.0196 57.84 103.06 

SRGM with Exponentiated Weibull [14] 565.4 0.0196 57.93 113.10 

SRGM with [14] Burr type X 565.7 0.0196 69.15 123.67 

Yamada Exponential model with exponential curve [41] 828.25 0.0118 131.4 140.7 

Yamada Rayleigh Model with with Rayleigh curve [41] 459.1 0.0273 28.23 268.4 

Yamada Weibull Model with Weibull curve [42] 565.35 0.0196 57.91 122.1 

Huang Logistic model [16] 394.08 0.0427 10.06 118.6 

Ohba exponential model [3] 4555.4 0.0267 27.09 206.9 

Infection S shaped model [3] 389.1 0.0935 8.69 133.5 

Delayed S shaped model [2] 374.05 0.1976 4.48 168.7 

G-O Model [1] 760 0.0322 112.2 139.8 

Delayed S shaped model with Rayleigh [16] 333.14 0.1004 6.93 798.5 
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Fig.5. Relative Error Graph SRGM with Generalized Gompertz Testing Effort for Dataset2. 

 

Table 3 describes different testing effort functions and their relative performance metrics for the dataset 2. 

 

Table 4 describes various models and their respective parameters and performance metrics like AE and MSE for the 

dataset 2. The software reliability growth model with proposed testing effort has a=134.23, b=0.153, AE=28.60 and 

MSE=48.20. From the Table 2 model with proposed testing effort had less AE and MSE values compared with other 

models. 

 

Figure 5 shows the relative error curve for the dataset 2, which specifies how far our proposed model follows the actual 

failure phenomenon. 

 

Table 3. Performance Analysis of Proposed Testing Effort Function and other Functions for Dataset2 

 

TEF Bias Variation RMS-PE 
PE (at the ending of the 

testing 

Exponentiated-Gompertz 0.038 0.358 0.351 0.171 

Exponentiated Weibull 0.07 0.387 0.384 0.127 

Burr type X 0.155 0.50 0.512 -0.47 

Yamada exponential -16.53 6.35 17.71 -13.29 

Yamada Rayleigh -1.149 3.46 3.64 6.03 

Huang logistic 0.055 0.35 0.35 -0.10 

 

Table 4. Performance Analysis of Proposed Software Reliability Model and other Models for Dataset2 

 

MODEL a b AE(%) MSE 

SRGM with eq. proposed TEF eq . 13 134.23 0.153 28.60 48.20 

SRGM with [14] Exponentiated Weibull 133.87 0.154 28.79 78.55 

SRGM with Burr type X[15] 134.11 0.152 28.67 123.7 

Yamada Rayleigh Model with [41] with 

Rayleigh curve 
866.94 0.00962 25.11 89.24 

Huang Logistic model [16] 138.02 0.1451 26.58 62.41 

Ohba exponential model[3] 137.2 0.156 27.12 3019.6 

Infection S shaped model[3] 159.11 0.0765 15.36 118.3 

Delayed S shaped model[2] 237.2 0.0963 26.16 245.24 

G-O Model[1] 142.32 0.1246 24.29 2438.3 

 

 

Fig.6. Relative Error Graph SRGM with Generalized Gompertz Testing Effort for Dataset3. 
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Table 5 describes different testing effort functions and their relative performance metrics for the dataset 3. 

 

Table 5. Performance Analysis of Proposed Testing Effort Function and other Functions for Dataset3 

 

TEF Bias Variation RMS-PE 
PE (at the ending of the 

testing 

Exponentiated-Gompertz -0.008 2.179 2.129 1.273 

Exponentiated Weibull 0.058 2.212 2.156 1.288 

Burr type X 0.155 2.35 2.35 -0.457 

Yamada Weibull 0.182 2.37 2.37 -0.44 

Yamada Rayleigh 0.324 2.38 2.40 0.15 

Huang logistic -0.122 2.28 2.28 0.19 

 

 

Table 6 describes various models and their respective parameters and performance metrics like AE and MSE for the 

dataset 3. The software reliability growth model with proposed testing effort has a=94.89, b=0.025 and MSE=5.42. 

From the Table 2 model with proposed testing effort had less AE and MSE values compared with other models. 

 

Table 6. Performance Analysis of Proposed Software Reliability Model and other Models for dataset3 

 

MODEL a r MSE 

SRGM with eq. 13 proposed TEF 94.89 0.025 5.42 

SRGM with Exponentiated Weibull[14] 94.8 0.025 5.70 

SRGM with eq Burr type X [14] 94.61 0.0254 6.55 

Yamada Weibull Model with Weibull curve[42] 87.03 0.0345 7.77 

Huang Logistic model[16] 88.89 0.0390 25.2 

Delayed S shaped model [2] 88.65 0.028 6.31 

G-O Model [1] 137.1 0.0515 25.3 

 

Figure 6 shows the relative error curve for the dataset 3, which specifies how far our proposed model follows the actual 

failure phenomenon 

 

Optimal Release Time Policy 

Identifying the exact time of release of software product from the software industry is an important issue. [7-9, 15] 

Many authors have focused on this issue. Determining the exact time of release of software product can greatly impact 

on the software cost and its quality. If the software product released in a short time can save time and cost but we have 

to compromise with reliability; if the product released after a long and through testing, the product can have quality but 

it increases the cost of testing. Release time of the software product depends on two factors, one reliability and another 

cost. So, we need to determine the time of delivery of software product such that the product can have high reliability 

and cost of expenditure of testing is minimized. 

 

Software Reliability 

Software reliability is defined as probability of product should function correctly in a given environment before it 

fails. 

 

𝑅 = 𝑒−[𝑚(𝑡+Δ𝑡)−𝑚(𝑡)]          (25) 

 

In the equation (25) R represents the reliability of software product. Figure 7 represents the estimated reliability of 

software product from the proposed model. In the equation 25 m(t) is mean value of proposed software reliability 

model. Δ𝑡 represents the fraction of time period, in our case we assumed the value 0.2. 
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Fig.7. Estimated Reliability Curve for the Dataset1. 

 

Software Cost 

Computing the software cost during the software development was is an important task, several authors have 

concentrated much on this issue. Cost of the software product development can be an integration of different cost‟s, one 

before testing phase, one during the testing and cost related to after delivery. Let‟s assume C1 is the cost incur for 

finding the errors pre testing phase, C2 is cost to detect the errors during the testing phase and C3 is cost incur to find 

errors after the testing phase. 

 

 
The term COST in the equation (26) represents the total cost incurs during product development. T represents the 

constant usually we assume maximum time for this quantity, in our paper we assign the value 100 to this term. 

 

 

Fig.8. Estimated Cost Curve for the Dataset1. 

 

From the equation (26) we computed the cost of development by assigning C1=1$, C2=5$ and C3=10$ for the dataset-

1. Figure 8 shows the graph of computed cost for the proposed software reliability growth model. Table 7 shows the 

computed cost and reliability of proposed software reliability model. 

 

Release Time Determination 

From the equation (25) and (26) we have computed reliability and cost of software product. Software product can be 

released into market either time at which cost of product become optimal or time at which reliability of software 

become standard accepted level. In this paper standard acceptance of software reliability level is 0.95 which can be 

obtained at TR= 38.5 weeks and optimal cost COST=1120$ was obtained at TC=40 weeks. 

 

𝑇0 = { , 𝑇𝐶 }

 (2

7) 
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From the equation (27) we can extract the optimal time T0 which satisfies the our both conditions. In our case the 

optimal release time T0=38.5 weeks. 

 

 

 

Table 7. Cost and Reliability for the Dataset 1 

 

TIME 
RELIABI

LITY 
COST TIME 

RELIABI

LITY 
COST TIME 

RELIAB

ILITY 
COST 

11 0.03 1456.36 21 0.18 1179.84 31 0.66 1124.67 

12 0.03 1413.67 22 0.21 1167.97 32 0.72 1123.53 

13 0.04 1374.48 23 0.25 1158.11 33 0.77 1122.67 

14 0.05 1338.8 24 0.29 1150.02 34 0.81 1122.03 

15 0.06 1306.61 25 0.33 1143.45 35 0.85 1121.56 

16 0.07 1277.83 26 0.38 1138.18 36 0.89 1121.22 

17 0.08 1252.35 27 0.44 1134 37 0.92 1120.97 

18 0.1 1230.01 28 0.49 1130.71 38 0.94 1120.8 

19 0.12 1210.62 29 0.55 1128.15 39 0.96 1120.68 

20 0.15 1193.97 30 0.61 1126.18 40 0.97 1120.6 

 

CONCLUSIONS 

 

Using the recently developed Exponentiated-Gompertz testing effort, we have examined the testing effort dependent 

software reliability growth model in this research. The Exponentiated-Gompertz testing effort function can be used to 

fit any kind of dataset and is linked to different failure rate features. The software reliability growth model provides an 

excellent match and accurately represents the real testing effort when combined with the proposed testing effort 

function. By comparing the suggested model with earlier models using performance indicators, it was determined that 

the proposed testing effort model produced satisfactory results. The software product's release schedule is computed in 

this paper based on many characteristics, including cost and dependability. 
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