Coefficient Inequality for a Certain Subclasses of Analytic Functions

Harpinder Kaur

Assistant Professor, Guru Gobind Singh Khalsa College, Bhagta Bhai Ka (Bathinda)

ABSTRACT

We introduce some classes of analytic functions, its subclasses and obtain sharp upper bounds of the functional $|a_3 - \mu a_2^2|$ for the analytic function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n, |z| < 1$ belonging to these classes and subclasses.

Keywords: Univalent functions, Starlike functions, Close to convex functions and bounded functions.

MATHEMATICS SUBJECT CLASSIFICATION: 30C50

INTRODUCTION

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 (1.1)

which are analytic in the unit disc $\mathbb{E} = \{z: |z| < 1|\}$. Let S be the class of functions of the form (1.1), which are analytic univalent in \mathbb{E} .

In 1916, Bieber Bach ([7], [8]) proved that $|a_2| \le 2$ for the functions $f(z) \in S$. In 1923, Löwner [5] proved that $|a_3| \le 3$ for the functions $f(z) \in S$..

With the known estimates $|a_2| \le 2$ and $|a_3| \le 3$, it was natural to seek some relation between a_3 and a_2^2 for the class S, Fekete and Szegö[9] used Löwner's method to prove the following well known result for the class S.

Let
$$f(z) \in \mathcal{S}$$
, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{bmatrix} 3 - 4\mu, if \ \mu \leq 0; \\ 1 + 2\exp\left(\frac{-2\mu}{1-\mu}\right), if \ 0 \leq \mu \leq 1; \\ 4\mu - 3, if \ \mu \geq 1. \end{bmatrix}$$
(1.2)

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for some sub classes S (See Chhichra[1], Babalola[6]).

Let us define some subclasses of S.

We denote by S*, the class of univalent starlike functions

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{A}$$
 and satisfying the condition

$$Re\left(\frac{zg\left(z\right)}{g\left(z\right)}\right) > 0, z \in \mathbb{E}.$$
 (1.3)

We denote by \mathcal{K} , the class of univalent convex functions

$$h(z) = z + \sum_{n=2}^{\infty} c_n z^n$$
 , $z \in \mathcal{A}$ and satisfying the condition

$$Re\frac{((zh'(z))}{h'(z)} > 0, z \in \mathbb{E}. \tag{1.4}$$

A function $f(z) \in \mathcal{A}$ is said to be close to convex if there exists $g(z) \in S^*$ such that

$$Re\left(\frac{zf'(z)}{g(z)}\right) > 0, z \in \mathbb{E}.$$
 (1.5)

The class of close to convex functions is denoted by \mathbb{C} and was introduced by Kaplan [3] and it was shown by him that all close to convex functions are univalent.

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045 Volume 6, Issue 1, January-June, 2017, Impact Factor: 4.295, Available online at: www.eduzonejournal.com

$$S^* (A, B) = \left\{ f(z) \in \mathcal{A}; \frac{zf'(z)}{f(z)} < \frac{1 + Az}{1 + Bz}, -1 \le B < A \le 1, z \in \mathbb{E} \right\}$$
 (1.6)

$$\mathcal{K}(A,B) = \left\{ f(z) \in \mathcal{A}; \frac{\left(zf'(z)\right)'}{f'(z)} < \frac{1+Az}{1+Bz}, -1 \le B < A \le 1, z \in \mathbb{E} \right\}$$

$$\tag{1.7}$$

It is obvious that $S^*(A, B)$ is a subclass of S^* and $\mathcal{K}(A, B)$ is a subclass of \mathcal{K} .

We introduce a new class as $\left\{f(z) \in \mathcal{A}; \frac{z\left\{\left(f^{'}(z)\right)^{2} + f(z)f^{''}(z)\right\}}{f(z)f^{'}(z)} < \frac{1+z}{1-z}; z \in \mathbb{E}\right\}$ and we will denote this class as $S^{*}(f, f^{'}, f^{''})$.

We will also deal with two subclasses of $S^*(f, f', f'')$ defined as follows:

$$S^{*}(f, f', f''; A, B) = \left\{ f(z) \in \mathcal{A}; \frac{z\left\{ \left(f'(z) \right)^{2} + f(z) f''(z) \right\}}{f(z)f'(z)} < \frac{1 + Az}{1 + Bz}; z \in \mathbb{E} \right\}$$

$$(1.8)$$

$$S^{*}(f, f', f''; A, B, \delta) = \left\{ f(z) \in \mathcal{A}; \frac{z\left\{ \left(f'(z) \right)^{2} + f(z) f''(z) \right\}}{f(z)f'(z)} < \left(\frac{1 + Az}{1 + Bz} \right)^{\delta}; z \in \mathbb{E} \right\}$$
(1.9)

Symbol \prec stands for subordination, which we define as follows:

Principle of Subordination: Let f(z) and F(z) be two functions analytic in \mathbb{E} . Then f(z) is called subordinate to F(z) in \mathbb{E} if there exists a function w(z) analytic in \mathbb{E} satisfying the conditions w(0) = 0 and |w(z)| < 1 such that f(z) = F(w(z)); $z \in \mathbb{E}$ and we write f(z) < F(z).

By \mathcal{U} , we denote the class of analytic bounded functions of the form $w(z) = \sum_{n=1}^{\infty} c_n z^n$, w(0) = 0, |w(z)| < 1.

It is known that $|c_1| \le 1$, $|c_2| \le 1 - |c_1|^2$. (1.11)

PRELIMINARY LEMMAS

For
$$0 < c < 1$$
, we write $w(z) = \left(\frac{c+z}{1+cz}\right)$ so that
$$\frac{1+w(z)}{1-w(z)} = 1 + 2cz + 2z^2 + \cdots. \tag{2.1}$$

MAIN RESULTS

THEOREM 3.1: Let $f(z) \in S^*(f, f', f'')$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{19}{36} - \frac{4}{9}\mu, if\mu \leq \frac{5}{8}; \\ \frac{1}{4}, if \frac{5}{8} \leq \mu \leq \frac{7}{4}; \\ \frac{4}{9}\mu - \frac{19}{36}, if \mu \geq \frac{7}{4}. \end{cases}$$

$$(3.1)$$

The results are sharp.

Proof: By definition of $S^*(f, f', f'')$, we have

$$\frac{z\left\{\left(f^{'}(z)\right)^{2} + f(z)f^{''}(z)\right\}}{f(z)f^{'}(z)} = \frac{1 + w(z)}{1 - w(z)}; w(z) \in \mathcal{U}. \tag{3.4}$$

Expanding the series (3.4), we get

$$(1+2a_2z+3a_3z^2+---)^2+(z+a_2z^2+a_3z^3+---)(2a_2+6a_3z+12a_4z^2+---)=(1+a_2z+a_3z^2+---)(1+2a_2z+3a_3z^2+---)(1+2c_1z+2(c_2+c_1^2)z^2+---).$$

$$\{1 + 4a_2z + (6a_3 + 4a_2^2)z^2 + - - - \} + \{2a_2z + (6a_3 + 2a_2^2)z^2 + - - - \} = (1 + 3a_2z + (4a_3 + 2a_2^2)z^2 + - - -)(1 + 2c_1z + 2(c_2 + c_1^2)z^2 + - - -).$$

$$1 + 6a_2z + 6(2a_3 + a_2^2)z^2 + - - = 1 + (3a_2 + 2c_1)z + (4a_3 + 2a_2^2 + 6a_2c_1 + 2c_2 + 2c_1^2)z^2 + - - -$$
(3.5)

Identifying terms in (3.5), we get

$$a_2 = \frac{2}{3} c_1 \tag{3.6}$$

$$a_3 = \frac{1}{4} c_2 + \frac{19}{36} c_1^2. {(3.7)}$$

From (3.6) and (3.7), we obtain

$$a_3 - \mu a_2^2 = \frac{1}{4}c_2 + \left[\frac{19}{36} - \frac{4}{9}\mu\right]c_1^2. \tag{3.8}$$

EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045 Volume 6, Issue 1, January-June, 2017, Impact Factor: 4.295, Available online at: www.eduzonejournal.com

Taking absolute value, (3.8) can be rewritten as

$$|a_3 - \mu a_2^2| \le \frac{1}{4}|c_2| + \left|\frac{19}{36} - \frac{4}{9}\mu\right| |c_1^2|. \tag{3.9}$$

Using (1.9) in (3.9), we get

$$|a_3 - \mu a_2^2| \le \frac{1}{4} (1 - |c_1|^2) + \left| \frac{19}{36} - \frac{4}{9}\mu \right| |c_1|^2 = \frac{1}{4} + \left\{ \left| \frac{19}{36} - \frac{4}{9}\mu \right| - \frac{1}{4} \right\} |c_1|^2. \tag{3.10}$$

Case I: $\mu \leq \frac{19}{36}$. (3.10) can be rewritten as

$$|a_3 - \mu a_2^2| \le \frac{1}{4} + \left\{ \left(\frac{19}{36} - \frac{4}{9}\mu \right) - \frac{1}{4} \right\} |c_1|^2 = \frac{1}{4} + \left\{ \frac{5}{18} - \frac{4}{9}\mu \right\} |c_1|^2.$$
(3.11)

Subcase I (a): $\mu \le \frac{5}{8}$. Using (1.9), (3.11) becomes

$$|a_3 - \mu a_2^2| \le \frac{1}{4} + \left\{ \frac{5}{18} - \frac{4}{9}\mu \right\} = \frac{19}{36} - \frac{4}{9}\mu. \tag{3.12}$$

Subcase I (b): $\mu \geq \frac{5}{9}$. We obtain from (3.11)

$$|a_3 - \mu a_2^2| \le \frac{1}{4} - \left\{ \frac{6}{9}\mu - \frac{5}{18} \right\} |c_1|^2 \le \frac{1}{4}. \tag{3.13}$$

Case II: $\mu \ge \frac{19}{36}$. Preceding as in case I, we get

$$|a_3 - \mu a_2^2| \le \frac{1}{4} + \left\{ \frac{4}{9}\mu - \frac{7}{9} \right\} |c_1|^2. \tag{3.14}$$

Subcase II (a):
$$\mu \le \frac{7}{4}$$
. (3.14) takes the form $|a_3 - \mu a_2^2| \le \frac{1}{4}$. (3.15)

Combining subcase I (b) and subcase II (a), we obtain

$$|a_3 - \mu a_2^2| \le \frac{1}{4} if \frac{5}{8} \le \mu \le \frac{7}{4}. \tag{3.16}$$

Subcase II (b): $\mu \ge \frac{7}{4}$. Preceding as in subcase I (a), we get

$$|a_3 - \mu a_2^2| \le \frac{4}{9}\mu - \frac{19}{36}.\tag{3.17}$$

Combining (3.12), (3.16) and (3.17), the theorem is proved.

Extremal function for (3.1) and (3.3) is defined by $f_1(z) = \sqrt{2\left\{\frac{1}{1-z} - \log(1-z)\right\}}$.

Extremal function for (3.2) is defined by $f_2(z) = \sqrt{\log \left(\frac{1}{1-z^2}\right)}$.

REFERENCES

- [1]. Chichra, P. N., "New subclasses of the class of close-to-convex functions", Procedure of American Mathematical Society, 62, (1977), 37-43.
- [2]. Goel, R. M. and Mehrok, B. S., "A subclass of univalent functions", Houston Journal of Mathematics, 8, (1982), 343-357.
- [3]. Kaplan, W., "Close-to-convex schlicht functions", Michigan Mathematical Journal, 1, (1952), 169-185.
- [4]. Keogh, S. R. and Merkes, E. R., "A Coefficient inequality for certain classes of analytic functions", Procedure of American Mathematical Society, 20, (1989), 8-12.
- [5]. K. Löwner, "Uber monotone Matrixfunktionen", Math. Z., 38, (1934), 177-216.
- [6]. Kunle Oladeji Babalola, "The fifth and sixth coefficients of α-close-to-convex functions", Kragujevac J. Math., 32, (2009), 5-12.
- [7]. L. Bieberbach, "Uber einige Extremal probleme im Gebiete der konformen Abbildung", Math. Ann., 77(1916), 153-172.
- [8]. L. Bieberbach, "Uber die Koeffizientem derjenigen Potenzreihen, welche eine schlithe Abbildung des Einheitskreises vermitteln", Preuss. Akad. Wiss. Sitzungsb., (1916), 940-955.
- [9]. M. Fekete and G. Szegö, "Eine Bemerkung über ungerade schlichte Funktionen", J. London Math. Soc. 8 (1933), 85-89.
- [10]. R. M. Goel and B. S.Mehrok, "A coefficient inequality for a subclass of closeto-convex functions", Serdica Bul. Math. Pubs., 15, (1989), 327-335.
- [11]. Z. Nehari, "Conformal Mapping", McGraw-Hill, Comp., Inc., New York, (1952).