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ABSTRACT

We introduce some classes of analytic functions, its subclasses and obtain sharp upper bounds of the functional
|as — pa?| for the analytic function f(z) = z + Ye_, a, z" |z| < 1 belonging to these classes and subclasses.

Keywords: Univalent functions, Starlike functions, Close to convex functions and bounded functions.
MATHEMATICS SUBJECT CLASSIFICATION: 30C50
INTRODUCTION

Let A denote the class of functions of the form

f@)=z+ ¥ ,a,z" (1.1)
which are analytic in the unit disc E = {z:|z| < 1|}. Let § be the class of functions of the form (1.1), which are analytic
univalent in E.

In 1916, Bieber Bach ( [7], [8] ) proved that |a,| < 2 for the functions f(z) eS. In 1923, Léwner [5] proved that
|as| < 3 for the functions f(z) &S§..

With the known estimates |a,| < 2 and |a;| < 3, it was natural to seek some relation between a; and a,? for the

class 8§, Fekete and Szego[9] used Lowner’s method to prove the following well known result for the class §.
Let f(z) &8, then

3-4pifp<s0;
las — pa?| < 1+2exp(;—ft),ifo <ps<t 1.2)
4p—3,ifu=> 1.

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for some sub classes
(See Chhichra[1], Babalola[6]).
Let us define some subclasses of §.

We denote by S*, the class of univalent starlike functions

g(@) =z+ ) b,z" € A and satisfying the condition
n=2
29 (z)
Re (g(z)) >0,z €E. (1.3)
We denote by X, the class of univalent convex functions

h(z) = z+ Z c,z",z € A and satisfying the condition
n=2

(Gh @)
Re ) >0,z €E. (1.4)
A function f(z) € A is said to be close to convex if there exists g(z) € S* such that
zf'(2)
Re (g(z) )>0z€E (1.5)

The class of close to convex functions is denoted by € and was introduced by Kaplan [3] and it was shown by him
that all close to convex functions are univalent.
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* _ _zf'(z) 1+Az _
S (A,B)—{f(z)ec/l, [o< o 1SB<AS1,ZE[E} (1.6)
_ (@) 144z
K (A B) = {f(z) € A; o) < 1+Bz,—1 <B<A<1,z€ IE} .7

It is obvious that $*(4, B) is a subclass of $* and K (4, B) is a subclass of ¥.

’ 2 "
A @) o @ 14, : : ;o
7 < —; * ] .
or @ —iz€E and we will denote this class as S*(f, f,f )

We introduce a new class as {f(z) € A,;

We will also deal with two subclasses of S*(f, f', ") defined as follows:

' 2 "
o AP @) v of @) 1ia
S f.f .A,B)—{f(Z)Ecﬂ, Oe) < 15, 2€E (1.8)
S F o ABS) = c/‘l_z{(f'(z))2+f(z)f” (z)} A e L9
(f o f 5 AB8) = if@) e Ait————— < (130) iz € (L9)

Symbol < stands for subordination, which we define as follows:
Principle of Subordination: Let f(z) and F(z) be two functions analytic in E. Then f(z) is called subordinate to F(z) in E
if there exists a function w(z) analytic in E satisfying the conditions w(0) = 0and |w(z)| <1 such that f(z) =
F(w(z)); ze E and we write f(z) < F(2).

By U, we denote the class of analytic bounded functions of the form w(z) = Y7, c,z",w(0) =0, |w(2)| < 1.

(1.10)
Itis known that |c;| < 1,]c,| < 1 — |¢q|% (1.11)
PRELIMINARY LEMMAS
For0 < ¢ < 1, wewrite w(z) = (:CZZ) so that
i:EZ; = 1+ 2cz+22% + - 2.1)
MAIN RESULTS
THEOREM 3.1: Let f(2) € S*(f.f,f ), then
19 4 . 5
fg—g.u,lfliﬁ Y G.1)
jas —pa3l < 45, if T<p < (32)
4 19 . 7
\Gh—55 fnz g (3.3)
The results are sharp.
Proof: By definition of S*(f, ', f ), we have
2
AP @) v @ ©) 1w
for @ twe YA EU (34)
Expanding the series (3.4), we get
(14 2a,z+3a3z2°+—— )2+ (z+ ayz®> + azz> + — — —)(2a, + 6a3z + 12a,z> + — — =) = (1 + ayz + azz* +
—— )1 +2ayz+3a32> + — — =)+ 2c;z + 2(c; + 1)z + — — -).
{1+ 4ayz + (6a3+4a2)z* + — — =} + {2a,z + (6a3+2a3)z> + — — =} = (1 + 3a,z + (4a3+2a3)z* + — — -)(1 +
2c,z+ 2(c; + 1)z + — — -).
1+ 6a,z + 6(2a;+a3)z? + — — —= 1+ (3ay + 2¢,)z + (4az+2a3 + 6ayc, + 2¢c, + 2¢,2)z2 + ———  (3.5)
Identifying terms in (3.5), we get
2
a, = 5 C1 (36)
1 19
a3 = Z Cy + g Clz. (37)
From (3.6) and (3.7), we obtain
1 19 4
az — paj =;C2+[g—;ll cf. (3.8)

49



EDUZONE: International Peer Reviewed/Refereed Multidisciplinary Journal (EIPRMJ), ISSN: 2319-5045
Volume 6, Issue 1, January-June, 2017, Impact Factor: 4.295, Available online at: www.eduzonejournal.com

Taking absolute value, (3.8) can be rewritten as

—uad| < 7lesl + |52 = 5| Ikl

36

Usmg (1.9) in (3.9), we get

uazl< (1_|C1|)+|g——#||c1|2 s+ {m -0 - FHe

Casel: u < g- (3.10) can be rewritten as

las

Subcase | (b): u

1MM<——{M——N1V<-

1
— paz| < " {
Subcase | (a): ,u <

,ua2|< +

(

5
8’
{5
8

5
2_

emsh) —glal = 1+ {5 - s lalt

36 oM

Using (1.9), (3.11) becomes

S

We obtain from (3.11)

Case ll: u > g- Preceding as in case I, we get

las

Subcase 11 (a): u

1 4 7
—paj| <+ +{§,Lt—§}|61|2.
< %. (3.14) takes the form |a; — pa3| < i.

Combining subcase I (b) and subcase Il (a), we obtain

— paj| <

Subcase 11 (b) u =

f <‘u<—

- Precedlng as in subcase | (a), we get

19
1MA_—u—g

Comblnmg (3.12), (3.16) and (3.17), the theorem is proved.

Extremal function for (3.1) and (3.3) is defined by f;(z) = \/2 {i — logifl — z)}.

Extremal function for (3.2) is defined by f,(z) =
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